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In early work, Bardeen [l] proposed a model whereby a three-dimensional Femi fluid is 
confined to a half-space by a planar infinite barrier in the xy plane. Brown, Brown and 
March [4 subsequently worked out the Slater sum S(z,13), @= l/k& for this same 
model of partial confinement. The present work considers S(z,p) for additional 
harmonic confinement in the I direction. When the harmonic force constant is switched 
off the Slater sum calculated by Brown, Brown and March is recovered. The off-diagonal 
Slater sum, namely the canonical density matrix, is treated which in turn yields the 
Feynman propagator for this model when the reciprocal temperature p is replaced by the 
pure imaginary time. 

Keywork  Inhomogeneous F e e  fluid; Slater sum; Ropagator 

In an early paper concerned with surface physics, Bardeen [l] 
introduced a model whereby a three-dimensional Fermi gas is confined 
to a half-space by a planar infinite barrier at z=O in the (xy)-plane. 
Subsequently, Brown, Brown and March [2] calculated the so-called 
Slater sum S(r,p) for this model, defined from the Bardeen wave 
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174 C. AMOVILLI AND N. H. MARCH 

functions $&) and corresponding energy levels Ei as 

~ ( r ,  P> = C $i(r)*$i(r) exp(-PEi) : P = l / k B ~  (1) 
d i  

where kB denotes Boltzmann’s constant while T is the absolute 
temperature. In fact, the procedure of Ref. [2] was to solve the Bloch 
equation for the canonical density matrix C(r,r‘,p), which has the 
Slater sum as its diagonal element. The result for S(r,p) obtained by 
Brown, Brown and March [2], see also Moore and March [3], will 
be denoted by Soe(z,p), where B stands for (infinite) barrier and, 
anticipating additional one-dimensional confinement along the z-axis 
the subscript zero indicates the ‘switching off’ of such confining forces. 
The result of Ref. [2] was simply 

This tends to the well known (classical) partition function density 
l / ( 2 ~ p ) ~ / ~  far from the infinite barrier at z = 0. 

Here, we propose to study one-dimensional confinement along the 
z-axis additional to the Bardeen infinite barrier, motivation for such a 
study being the very recent discussion, within the framework of 
approximate variational studies of a one-dimensional Schrodinger 
equation, by Fessatidis, Mancini and Prie [4] of an electron subjected 
to an infinite barrier B plus a confining homogeneous electric field of 
arbitrary strength. However, that model for the calculation of the 
Slater sum still presents difficulties for analytical study. We shall 
therefore show with a simpler, harmonic confinement potential energy 

1 1 
2 2 

V(Z) = -kzZ -JzZ (3) 

along the z-axis, that the Slater sum, S,B(r,P), now obviously 
characterized by both the infinite barrier and the harmonic force 
constant k in Eq. (3) can be calculated in closed form. 

Let us start from the known form of the canonical density matrix 
C(r, r‘, PI: 
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calculated for a three-dimensional Fermi gas in the one-dimensional 
oscillator potential (3). The result is [5] 

where the classical angular frequency w = k’” with particle mass taken 
as unity as in Eq. (3). In Eq. ( 5 )  x denotes a two-dimensional vector in 
the (xy) plane while C, has the explicit form 

We now note that while Eq. (5 )  with C, given by Eq. (6) satisfies the 
Bloch equation 

with the ‘initial’ condition 

C(w;r,f ,p=O) = 6 ( r - f )  (8) 

we wish to introduce the Bardeen infinite barrier B. For this case, 
CwB(z, z’, p) must clearly vanish when either z or z‘ is zero, because of 
the conditions the barrier imposes on the Bardeen wave functions in 
Eq. (4). However, the one-dimensional harmonic oscillator wave 
functions without the barrier, which are implicit in Eq. (6), can be 
divided into symmetric (s) and antisymmetric (a) about z=O. The 
anti-symmetric functions plainly satisfy the barrier boundary condi- 
tion, and therefore we must project the ‘antisymmetric’ part out of 
Eq. (6). 

Thus C, in Eq. (6) can be written as a sum of a symmetric and an 
antisymmetric part: 

(9) c, = + Cb). 

Evidently, both 6) and will still satisfy the Bloch equation (7) 
with fir containing the harmonic potential (3), and, with the 
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176 C. AMOVILLI AND N. H. MARCH 

introduction of a factor of 2, one can readily restore the delta function 
boundary condition (8)  on the antisymmetric part C@. 

We note here the most direct route to the calculation of the Slater 
sum SwB(z, p) in the presence of the infinite barrier (B). To project out 
the antisymmetric part, we write 

SwB(z, p) = Sw(z,  a) - cw(z, -z, P )  
and using Eq. (6) one finds almost immediately 

W 1/2 } [ exp(-4A2) - exp(-4BZ)] 
= { 2rsinh (pW) 

where A and B are defined by 

W 
A(& w)  = tanh ($) 

and 

B(P,w)  =fcoth 4 ($). 
Letting the force constant k = 2 tend to zero, A + 0 as pk /8  from Eq. 
(12) while B from Eq. (12) has the limit 1/2/3. Equation (11) then 
reduces to the infinite barrier Slater sum given in Eq. (2). 

The off-diagonal generalization of Eq. (10) to the canonical density 
matrix associated with one-dimensional harmonic confinement plus 
the planar infinite barrier reads 

c w , B ( z ,  2, p) = cw(z,  i, - cw(z, -i, p) (14) 

and again using Eq. (6) one obtains 

1 I2 W } { exp [ - A(z - z ' ) ~  - B(z + z')~] 

- exp [ - A(. + 2)2 - B(Z - i12] } (15) 

which reduces to Eq. (1 1) on putting z' = z. 
We think it is of some interest to present an alternative argument to 

the above for projecting out the antisymmetric part d"). This 
alternative adopted below is to use a complex Fourier transform 
(FT). Implementing the FT technique to separate C" and C'") in 
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HARMONICALLY CONFINED FERMI FLUID 177 

Eq. (9), and using Eqs. (5) and (6) we need to evaluate the integral 

exp { - B(Z - i l 2 }  exp(-ipz'> &. (16) 

Physically I involves both direct and momentum space wave function 
&(z) and I,$, (p) respectively: 

I = C exp(-P&n>$n(z>4n,(p>. (17) 
n 

After regrouping the terms in the exponents in Eq. (16), Z can be 
evaluated as 

I = {  W )1i2exp{-4ABt- p2 1 
2(A + B) sinh (pW) A + B  4(A+B) 

[ cos ( ' 2 ) p z  A + B  + isin ('?)pz]. A + B  

The most remarkable feature of Eq. (18) is the relative simplicity of the 
z dependence. Now, we require to Fourier invert the p variable to z' in 
the imaginary part of Eq. (18) in order to recover CUB. 

To conclude the harmonic confinement with infinite barrier, let us 
determine the position z,,, of the spatial maximum for the Slater sum in 
Eq. (1 1). By differentiating with respect to z one gets 

zm = dln(A'B) 4(A - B)' 

Figure 1 shows a plot of C = ,/Zz,,, against y = Pw in units where 
e =  -1, h =  1, me= 1 and 47r.50= 1. 

To conclude, we note the following points: 

(i) the main result (15) of this Letter becomes the Feynman 
propagator for the infinite barrier plus harmonic confinement 
model when /3 -+ it, the pure imaginary time; 

(ii) it would be of interest for the future if one could 'switch on' to the 
C matrix (15) a linear potential Fz, as considered in Ref. [3]. One 
could write for the Slater sum 

SFwB(z, P) = SwB(z, P)  exp[-PU(z, P)] (20) 
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FIGURE 1 Shows in dimensionless form the variation of maximum (z,,,) in Eq. (19). 
The dependent variable C plotted is defined as W ’ ~ ~ Z , , ,  while 7= Pw. As 7 + 0, it is to be 
noted that C + 0 with an infinite slope. 

where U(z,a) is the effective potential associated with the 
‘perturbation’ Fz. The simplest choice of U(z,P) is to take it 
from the case of purely free electrons in a potential Fz, when it 
becomes [6] 

,d3 F2 V(Z, a) = FZ + - 
24 ’ 

In this regime the position of the spatial maximum of the Slater 
sum SwB(z, p) is shifted towards the barrier by a displacement Azm 
proportional to the field F. Admitting a linear response one can 
easily find the result 

where the second derivative is made with respect to z. 
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A more refined treatment would replace the ‘local’ term Fz by a non- 
local form derived from the perturbation theory of March and Murray 
[7], namely 

r 

Cw,B(ZI > 2, PI) + o ( F 2 )  (23) 

but the detail proliferates when the form (6) is used in that framework 
so we shall not go into further detail. However, a future study of the 
symmetric linear potential 4.1 is called for as one could then use the 
techniques described above to project out the antisymmetrical part 
reflecting the infinite barrier. 
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